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Abstract: Multivariate longitudinal ordinal data are often involved in longitudinal studies with each individual having more 

than one longitudinal ordinal measure. However, due to complicated correlation structures within each individual and no explicit 

likelihood functions, analyzing multivariate longitudinal ordinal data is quite challenging. In this paper, Markov chain Monte 

Carlo (MCMC) sampling methods are developed to analyze multivariate longitudinal ordinal data by extending multivariate 

probit (MVP) models for univariate longitudinal ordinal data to multiple multivariate probit models (MMVP) for multivariate 

longitudinal ordinal data. The identifiable MVP models require the covariance matrix of the latent multivariate normal variables 

underlying the longitudinal ordinal variables to be a correlation matrix, thus a Metropolis-Hastings (MH) algorithm is usually 

necessitated, which brings a rigorous task to develop efficient MCMC sampling methods. In contrast to the identifiable MVP 

models, the non-identifiable MVP models can be constructed to circumvent a MH algorithm to sample a correlation matrix by a 

Gibbs sampling to sample a covariance matrix, and hence improve the mixing and convergence of the MCMC components. 

Therefore, both the identifiable MMVP models and the non-identifiable MMVP models for multivariate longitudinal ordinal data 

are presented, and their corresponding MCMC sampling methods are developed. The performances of these methods are 

illustrated through simulation studies and an application using data from the Russia Longitudinal Monitoring Survey-Higher 

School of Economics (RLMS-HSE). 

Keywords: Multivariate Longitudinal Ordinal Data, MCMC, Multivariate Probit Model,  

Multiple Multivariate Probit Model, Identification 

 

1. Introduction 

Longitudinal ordinal data appear in many scientific 

research fields, such as medical research and health related 

surveys. However, these kinds of data usually involve more 

than one longitudinal ordinal measure collected from the same 

individual. For instance, in depression research studies, each 

individual may be asked to fill in the depression score, an 

ordinal variable indicating the levels of depression during 

follow-up visits; the sleeping disorder score may often be 

collected, also an ordinal variable measuring the extent of the 

quality of sleeping. Since those measures are collected from 

the same individual, it is desirable to analyze them jointly 

instead of separately. 

Generalized linear mixed-effects models have been widely 

utilized to analyze multivariate longitudinal data. Gibbons and 

Hedeker [8]) proposed three-level mixed-effects model for 

binary clustered data; Liu and Hedeker [17] extended the work 

of Gibbons and Hedeker [8] to longitudinal multivariate 

ordinal data. Cagnone et al [4] modeled multivariate 

longitudinal ordinal data using latent variable models by 

incorporating random effects to account for correlated 

structures. Grigorova et al [9] proposed an EM algorithm for 

multiple ordinal outcomes using a probit model with random 

effects. Laffont et al [15] proposed a multivariate probit mixed 

effects model for multivariate longitudinal ordinal data. 

Grigorova [10] proposed a random effect model for two 

longitudinal ordinal outcomes using EM algorithm for 

maximum likelihood estimation. Tran et al [23] proposed a 

latent linear mixed model with serial correlation structures for 

multivariate longitudinal ordinal data. 

Multivariate marginal models have also been popularly 

explored for multivariate longitudinal or clustered ordinal data. 

Due to the lack of explicit likelihood functions, generalized 
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estimating equations (GEE) methods are at an advantage as 

tools to analyze multivariate non-Gaussian data including 

multivariate longitudinal or clustered ordinal data. Related 

works include Qu et al [20], Heagerty and Zeger [12], Jiang et al 

[13] and Spiess [22]. Formulating the estimation equation using 

quasi-likelihood, Cho [6] proposed a multivariate marginal 

model to analyze multivariate longitudinal data. Complete 

reviews regarding multivariate longitudinal data can be referred 

to Bandyopadhyay and Ganguli [1] and Verbeke et al [24]. 

The MCMC methods have become general computation tools 

in Bayesian inference and have been generally investigated for 

various multivariate data. Univariate longitudinal binary data 

has been investigated using the MVP models [5, 18, 25, 26]. 

Univariate longitudinal ordinal data has been considered by 

Lawrence et al [16] and Zhang [27] using the non-identifiable 

MVP models. Dunson [7] proposed Bayesian latent variables 

with random effects for clustered mixed data including 

multivariate longitudinal ordinal data. However, multivariate 

longitudinal ordinal data have been seldomly inspected using 

marginal models. Comparing with the random-effects models, 

the marginal models can give direct estimation for correlations 

among multivariate measures. This paper is trying to fill in this 

gap by developing MCMC methods to analyze multivariate 

longitudinal ordinal data using the MMVP models. The 

reminder of this paper is organized as follows. Section 2 contains 

the identifiable MMVP model and the corresponding MCMC 

method for multivariate longitudinal ordinal data. The 

non-identifiable MMVP model is constructed in Section 3, 

consisting of the two proposed MCMC methods. Simulation 

studies regarding these proposed methods are conducted in 

Section 4, followed by Section 5 - an application to the 

RLMS-HSE data. A brief discussion is presented in Section 6. 

2. Identifiable MMVP Model and 

Metropolis-Hastings-Within-Gibbs 

Sampler 

2.1. Identifiable MMVP Model 

The univariate probit model assumes that there is an 

underlying univariate normal variable corresponding to an 

ordinal variable. Specifically, suppose for each individual �, 

� = 1, ⋯ , � , there is an ordinal outcome �	  with 
 

categories and a � × 1 covariate vector 
	. Then the probit 

model assumes that there is a latent variable �	 underlying 

�	 , following a normal distribution with mean 
	�  and 

variance being ��, denoted by �(
	�, ��), where � is the 

� × 1  regression parameter vector. The model further 

assumes that 

�	 = �	 ⇔ 	���� < �	 ≤ �� for � = 1,⋯ , 
, 
i.e., ���� ≤ � = 	Φ "#$�%&'() *, where Φ(∙) is the standard 

normal distribution function and � = (�,, ��, ⋯ �-)  being 

the unknown cut-points. The identifiable model is usually 

defined by �� = 1 and �, = −∞, �� = 0, and �- = ∞. 

The multivariate probit (MVP) model assumes for each 

individual � , �	 = (�	�, ⋯ , �	1)2 is a 3-dimensional ordinal 

outcome with each �	�  has 
�  ordinal categories for 	� =
1,⋯ , � and 4 = 1,⋯ , 3; there is an underlying multivariate 

normal variable �	 = (�	�, ⋯ , �	1)2  corresponding to �	 = (�	�, ⋯ , �	1)2 , such that �	� = �	 ⇔ 	��,��� < �	� ≤ ��,� 
for � = 1,⋯ , 
�, ��,, = −∞, ��,� = 0, and ��,-5 = ∞. It can 

be seen that the univariate probit model holds for each pair of �	�  and �	�, which implies the variance of each �	� is fixed 

at 1 for the model to be identifiable. With 
	 = (
	�, ⋯ , 
	1)2 being the covariate matrix for individual � , the model further assumes that �	 = (�	�, ⋯ , �	1)2 

following a multivariate normal distribution with the mean 

vector being 
	� and the covariance matrix 6, which in 

fact is a correlation matrix, i.e., �	~�1(
	�, 6). 
Extending the MVP model for one longitudinal ordinal 

variable to multiple multivariate probit (MMVP) model for 

multivariate longitudinal ordinal variables can be defined as 

follows. Suppose that there are �  individuals with 8 

longitudinal ordinal response variables, each of which is 

collected 91  time points. Specifically, denote � =(��, ⋯ , �:)2  with �	 = (�	∙�, ⋯ , �	∙;)2  and �	∙1 =(�	�1 , ⋯ , �	2<1)2 for � = 1,⋯ ,�, and 3 = 1,⋯ , 8. As can 

be seen, for each individual �, the number of variables for 

the response vector �	 is ∑ 91;1>� , and thus � is a vector 

with � ×	∑ 91;1>�  elements. If each longitudinal response 

variable, �	∙1, is assumed to has the same number of time 

points, i.e., 9� = 9� = ⋯ = 9; , denoted by 9 , then the 

number of elements for the response vector �	 is � × 9 × 8. 

Denote the covariate matrix of individual � for the 3th 

longitudinal ordinal variable �	∙1  as 


	∙1 = �
	�1 , ⋯ , 
	2<1 2<×?<
2

, and the regression parameter 

vector �1 = (�1�, ⋯ , �1?<)2. Then the covariate matrix for 

individual �  can be written as 


	 = block-diagonal�I2L×2L , ⋯ , I2M×2M × (
	∙�, ⋯ , 
	∙;)2  

with I2<×2< being the identity matrix for 3 = 1,⋯ , 8, and 

the regression parameter vector �  as � = (��2 , ⋯ , �;2)2 

with �1 = (�1�, ⋯ , �1?<)2 . Assuming that 
	∙� = ⋯ =

	∙; = 
	, i.e., each longitudinal ordinal variable �	∙1 has the 

same covariate matrix, then 
	 = I; ⊗
	 , where I;  is a 8 × 8 identity matrix and ⊗ is the left Kronecker product. 

The MVP model is assumed for each longitudinal ordinal 

response variable �	∙1 = (�	�1 , ⋯ , �	2<1)2 , there is a latent 

multivariate normal variable �	∙1 = (�	�1, ⋯ , �	2<1)2 

follows a multivariate normal distribution with mean vector 

being 
	∙1�1  and covariance matrix 61 , which is a 

correlation matrix for the identifiable model. Assume that �	O1  has PO1  categories, then the cut-points for the latent 

variable �	O1  can be defined as follows: �	O1 = P	 ⇔	�O,1,Q�� < �	O1 ≤ �O,1,Q , for P = 1,⋯ , PO1 , �O,1,, = −∞ , �O,1,� = 0 , and �O,1,QR< = ∞ ; � = 	 (��, ⋯ , �;)2  with 

�1 = (��1, ⋯ , �2<1)  and �O1 = (�O,1,�, ⋯ , �O,1,QR<)  for 

3 = 1,⋯ , 8  and S = 1,⋯ , 91 . Denote � = (��, ⋯ , �:)2  

and �	 = (�	∙�, ⋯ , �	∙;)2 for � = 1,⋯ ,�. It can be shown 

that �	~�∑ 2<M<TL (
	�, 6) , and 6  is a correlation matrix 

with the block diagonal matrices being 6�, ⋯ ,6;. 
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2.2. Metropolis-Hastings-Within-Gibbs Sampler (MH-GS) 

The priors for � , �  and 6  are assumed to be 

independent, i.e., �(�, �, 6) = �(�) × �(�) × �(6) . Then 

the posterior joint density of �, �, 6,	 and �  given the 

observed multivariate longitudinal ordinal outcome � = (��, ⋯ , �:)2can be derived in the following: 

�(�, �, 6, �│�) ∝ �(�) × �(�) × �(6) × �(�|�, �, 6, �) 
∝ �(�) × �(�) × �(6) × ∏ [I	:	>� × Z(�	; 
	�, 6)]  

where Z(∙)  is the standard normal density function, and 

I	 = ∏ I	1;1>� , where I	1 = ∑ 1(]&R<>�)2<O>� 1�#R,<,$^L_`&R<a#R,<,$	 , 
indicating compatibility of the latent variable �	  with the 

ordinal variable �	 , � = 1,⋯ ,� . To implement the MCMC 

sampling, each full conditional distribution is derived as follows: 

�|	�, 6, �, �~�∑ ?<M<TL (�b, c()  where 

c( = (∑ 
	26��
	:	>� + e��)��	 and 

�b = c((∑ 
	26���	:	>� + e��f) , assuming the prior of � 

follows �∑ ?<M<TL (f, C) with the mean vector equal to f and 

the covariance matrix equal to e. �	O1|�1 , �1, 6, �	O1 , �	�1 , 4 ≠ S  is the interval truncated 

normal distribution constrained to lie between two cut-points �O,1,Q�� and �O,1,Q, assuming �	O1 = P. �O,1,Q|	�, 6, �, �, �O,1,� 	P ≠ �  is a uniform distribution, 

i(�O,1,Q|maxlmax[�	O1: �	O1 =
P] , �O,1,Q��	n , minlmin[�	O1: �	O1 = P + 1] , �O,1,Qo�	n),  

assuming a non-informative prior for �O,1,Q, i.e., ���O,1,Q ∝
1. 

The full conditional density function of 6 can be derived 

as �(6|�, �, �, �) ∝ �(6) × ∏ Z(�	; 
	�, 6):	>� , which does 

not belong to any standard density function due to	6 being a 

correlation matrix instead of a covariance matrix. Zhang et al 

[26] proposed a MH algorithm to sample	6 for univariate 

longitudinal binary data and used Wishart distributions to 

derive the prior and proposal distributions for 6. For MMVP 

model, the proposed method for sampling 6 is extended to 

allow more flexible priors and proposal distributions 

including those based on Wishart distributions. 

Several priors for a correlation matrix have been employed, 

such as the Jeffreys’ prior (6?×? ∝ |6|�qrL
s ) [3], truncated 

multivariate normal prior [5], marginally uniform prior 

(��t	� ∝ 1 [2], and joint uniform prior (6 ∝ 1)[2, 18]. It 

can be shown that if Σ v= wL
s6wL

sx~Wishart?(z, c) with 

z degrees of freedom and c being a diagonal matrix, 6 

and w (a diagonal matrix with diagonal elements being the 

variance parameters) are independent and ��6?×? ∝
|6|{^q^L

s ; if c is a non-diagonal matrix, 6 and w are not 

independent. If Σ v= wL
s6wL

sx~Inverse-Wishart?(z, c) , 6 

and w are not independent for any scale matrix c being 

diagonal or non-diagonal matrices. 

Although there is not an explicit formula for the marginal 

density of 6  derived from a Wishart distribution with a 

non-diagonal scale matrix and an inverse-Wishart 

distribution, the joint density of	6 and wcan be derive as 

�(6, w) = 	�(Σ) × |
}→�,�| with Jacobian matrix |
}→�,�| =
|w|q^L

s  and	�(Σ) being the density function of Wishart or 

inverse-Wishart distribution. The weak point to use �(6, w) 

as the prior of 6  is that it includes redundant w  with 

diagonal elements serving as variance parameters; however, 

the advantage is that it allows more flexible prior 

specification for 6 through the specification of the scale 

matrix c other than a diagonal matrix. If �(6, w) is used 

for the prior of 6, then the full conditional density function 

of 6  and w  is �(6, w|�, �, �, �) ∝ �(6, w) × ∏ Z(�	; 
	�, 6):	>� . As can 

be seen, w is involved only through the prior of �(6, w), 

the model itself does not change and still remains identifiable. 

The MH algorithm is proposed to sample 6  and w  as 

follows: 

Set initial value of �6(,), w(,)  through setting Σ(,) =
w(,)Ls6(,)w(,)Ls  to an initial covariance matrix. Then, at 

iteration S 
Generate (6∗, w∗)  by generating Σ∗ = w∗Ls6∗w∗Ls  from 

Wishart∑ 2<M<TL �	z?, Σ(O)/	z?  or 

Inverse- Wishart∑ 2<M<TL �	z?, z?Σ(O)  with z?  degrees of 

freedom. 

Take 

�6(Oo�), w(Oo�) = �	(6∗, w∗)	with	probability	�	
�6(O), w(O) 	otherwise,

 

where � = min � �(�∗,�∗|(,#,`,])
�(�(R),�(R)|(,#,`,])

	�(}(R)|}∗)
�(}∗|}(R)) , 1� , and the 

proposal density �(Σ∗|Σ(O))  is equal to |
}∗→�∗,�∗| ×
Wishart∑ 2<M<TL �z?, Σ(O)/	z?  or 

|
}∗→�∗,�∗| × Inverse-Wishart∑ 2<M<TL �z?, z?Σ(O) . Notice 

that if 6  and w  are prior independent, then �(6, w|�, �, �, �) = �(6|�, �, �, �). 
Accordingly, the MCMC sampling framework can be 

implemented through three Gibbs sampling steps for �, � 

and � and one MH sampling step for 6, and this sampling 

method is denoted as Metropolis-Hastings-within-Gibbs 

Sampler (MH-GS). 

3. Non-Identifiable MMVP Model and 

Parameter-Expanded Data 

Augmentation 

3.1. Non-Identifiable MMVP Model 

The identifiable MVP model assumes that the latent 

variable �	~�1(
	�, 6) with	6 being a correlation matrix. 

The non-identifiable MVP model can be constructed by 

assuming �	~�1(w��/�
	�, 6) or wL
s�	~�1(
	�, wL

s6wL
s) , 

with w  being a diagonal matrix with diagonal elements (���, ���, ⋯ , �11) serving as redundant variance parameters. 

Define �	 = wL
s�	  and Σ = wL

s6wL
s , then �	~�1(
	�, Σ) 
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with Σ being a covariance matrix without restrictions in the 

diagonal elements [27]. Then the non-identifiable MVP 

model can be defined as follows: 

�	� = �	 ⇔ 	 ��,��� < �	� 	≤ ��,�, 
with �� = (��,,, ��,�, ⋯ ��,-5) being the unknown cut-points 

with ��,, = −∞, ��,� = 0, and �-5 = ∞, for	4 = 1,⋯ , 3. 

The non-identifiable MVP model for univariate 

longitudinal ordinal data can be extended to the MMVP 

model for multivariate longitudinal ordinal data. The 

notations for the response variable � = (��, ⋯ , �:)2 , the 

covariate matrix 
	  for individual � , and the regression 

parameter vector � remain the same as those defined in 

Section 2.1. But the non-identifiable MVP model is assumed 

for each longitudinal ordinal response variable �	∙1 =(�	�1 , ⋯ , �	2<1)2 , there is a latent multivariate normal 

variable �	∙1 = (�	�1, ⋯ ,�	2<1)2 following a multivariate 

normal distribution with mean vector being 
	∙1�1  and 

covariance matrix Σ1 , i.e., 

�	∙1�= w1�/��	∙1 ~�2<(
	∙1�, Σ1)  with w1  being a 

diagonal matrix with diagonal elements 

��2<�, �2<�, ⋯ , �2<2< . Denote � = (��, ⋯ ,�:)2  and 

�	 = (�	∙�, ⋯ ,�	∙;)2 for � = 1,⋯ ,�. It can be shown that �	~�∑ 2<M<TL (
	�, Σ), and Σ is a covariance matrix with the 

block diagonal matrices being Σ�, ⋯ , Σ; . Assume that �	O1 

has PO1 categories, then the cut-points for the latent variable �	O1  can be defined as follows: �	O1 = P	 ⇔ 	�O,1,Q�� <�	O1 ≤ �O,1,Q, for P = 1,⋯ , PO1, �O,1,, = −∞, �O,1,� = 0, and �O,1,QR< = ∞ ; � = 	 (��, ⋯ , �;)2  with �1 = (��1 , ⋯ , �2<1) 
and �O1 = (�O,1,�, ⋯ , �O,1,QR<)  for 3 = 1,⋯ , 8  and 

S = 1,⋯ , 91. The identifiable cut-points �1 can be obtained 

by w1��/��1, and thus � = w�L
s�, with w being a diagonal 

matrix with the block diagonal matrices being w�, ⋯ , w; . 

There are two circumstances to get the identifiable �: if 
	 
is the identity matrix, then w�L

s� is the identifiable values 

for �; otherwise use 
�
2< ∑ �2<O

��/�2<O>� �1?  as the identifiable 

value of �1? , for 3 = 1,⋯ , 8 , S = 1,⋯ , 91 , and � =
1,⋯ , �1 . 

3.2. Parameter-Expanded Data Augmentation Sampling 

Algorithms 

Assume the priors for �, � and Σ are independent, i.e., �(�, �, Σ) = �(�) × �(�) × �(Σ). Then the posterior joint 

density of �, �, Σ,	and �  given the observed multivariate 

longitudinal ordinal outcome � = (��, ⋯ , �:)2 can be 

derived in the following: 

�(�, �, Σ,�│�) ∝ �(�) × �(�) × �(Σ) × �(�|�, �, Σ, �) 
∝ �(�) × �(�) × �(Σ) × ∏ [I	:	>� × Z(�	; 
	�, Σ)]  

where Z(∙) is the standard normal density function, and 

I	 = ∏ I	1;1>� , where I	1 = ∑ 1(]&R<>�)2<O>� 1��R,<,$^L_�&R<a�R,<,$	 , 
indicating compatibility of the latent variable �	 with the 

ordinal variable �	, � = 1,⋯ ,�. Then the MCMC sampling 

algorithm can be derived as follows: 

�|	�, Σ,�, �~�∑ ?<M<TL (�b, c()  where 

c( = (∑ 
	2Σ��
	:	>� + e��)��	 and 

�b = c((∑ 
	2Σ���	:	>� + e��f) , assuming the prior of � 

follows �∑ ?<M<TL (f, C) with the mean vector equal to f and 

the covariance matrix equal to e. �	O1|�1 , �1 , Σ, �	O1 ,�	�1 , 4 ≠ S  is the interval truncated 

normal distribution constrained to lie between two cut-points �O,1,Q�� and �O,1,Q, assuming �	O1 = P. �O,1,Q|	�, Σ,�, �, �O,1,� 	P ≠ �  is a uniform distribution, 

i(�O,1,Q| maxlmax[�	O1: �	O1 =
P] , �O,1,Q��	n , minlmin[�	O1: �	O1 = P + 1] , �O,1,Qo�	n),  

assuming a non-informative prior for �O,1,Q, i.e., ���O,1,Q ∝
1. 

Σ|�, �,�, �	~	Inverse-Wishart∑ 2<M<TL (∑ (�	 −:	>�

	�)(�	 − 
	�)2 + c,� + ∑ 91;1>� + z + 1) , assuming 

�(Σ) = Inverse-Wishart∑ 2<M<TL (z, c), a conjugate prior for 

Σ. 

As illustrated, the above four sampling steps are Gibbs 

sampling, and especially the posterior sample for Σ , a 

covariance matrix, can be directly sampled from an 

inverse-Wishart distribution, instead of a MH step to sample 6, a correlation matrix, for the identifiable model in Section 

2.2. This algorithm is termed as the parameter-expanded data 

augmentation (PX-DA) algorithm. However, including the 

redundant parameters in the diagonal of w , the model 

becomes non-identifiable and the sampled values of � and � 

are not identifiable. Therefore, marginalizing w  can be 

considered by jointly sampling �,w|�, �, 6, �  (sampling w|�, �, 6, �	followed by sampling �|�, �, 6, w, �) and then 

jointly sampling �, �, 6, w|�, �  (sampling �|6, w,�, � , 6, w|�,�, �, and then �|�, 6, w,�, �). It is noticeable that �|�, �, 6, w, � , �|6, w,�, � , 6, w|�,�, � , and �|�, 6, w,�, �  are the same as those in the PX-DA 

algorithm by replacing 6 and w by Σ v= wL
s6wL

sx. And the 

sampling of w|�, �, 6, �  is actually sampling w|6 , the 

conditional prior of w  given 6 . With 

�(Σ) = Inverse-Wishart∑ 2<M<TL (z, c)  and c  being a 

diagonal matrix, the diagonal elements of w are independent 

given 6, and each follows an inverse-Gamma (� = �
� , � =

�
�55���� ) with c�� being the 4th element of c and t���  being 

the 4 th diagonal element of inverse of 6  for 4 = 1, 2,⋯ , ∑ 91;1>�  [11]. However, if c is not a diagonal 

matrix, sampling w necessitates a MH algorithm. Replacing �(6, w|�, �, �, �)  or �(6|�, �, �, �) by �(w|6) , the MH 

sampling method in section 2.2 can be used to sample w 

given 6. This algorithm is termed as the parameter-expanded 

data augmentation with marginalization (PX-DAM) 

algorithm. 

4. Simulation Studies 

The MH-GS algorithm for the identifiable MMVP model is 



 American Journal of Theoretical and Applied Statistics 2023; 12(1): 1-12 5 

 

proposed in Section 2 and the PX-DA and PX-DAM 

algorithms based on the non-identifiable MMVP model are 

developed in Section 3. To investigate these algorithms, 

simulation studies are conducted by generating two 

5-dimensional longitudinal ordinal response variables, each 

with 4 categories. The 5 × 2  covariate matrix for each 

longitudinal ordinal variable was generated from the uniform 

distribution on the interval (-0.5, 0.5), and the regression 

parameters for the first longitudinal ordinal variable is 

��
2 = (���, ���) = (1.0, 3.0)  and those for the second 

longitudinal ordinal variable is ��
2 = (���, ���) = (2.0, 5.0). 

The correlation matrix for the first longitudinal ordinal 

variable is the first-order autoregressive AR1(0.5), that for the 

second longitudinal ordinal variable is AR1(0.7), and the 

correlations between the first and the second longitudinal 

ordinal variables are set at 0.2. The cut-points for the latent 

multivariate normal variables are 1 and 2 (the first cut-point is 

fixed at 0). The non-informative priors for regression 

parameters � and the cut-points for the identifiable MMVP 

model � and for the non-identifiable model � are chosen; 

an Inverse-Wishart prior for Σ  with degrees of freedom 

z = 20  and scale matrix c  being an identity matrix. 

Sample sizes of 500, 1000 and 2000 are investigated and 100 

data sets are generated for each investigated scenario. Each 

algorithm runs 10,000 iterations with 2,000 burn-in. The 

MCMC convergence diagnostics were conducted using the R 

package-coda by Plummer et al [19] and R package-boa by 

Smith [21]. 

The averaged posterior means and standard deviations 

with 95% credible interval coverage probabilities for the 

regression parameters and cut-points are presented in Tables 

1 and 2 for sample sizes being 500 and 2,000 (the results for 

sample size being 1,000 is presented in Appendix Table A1). 

As can be seen, these three methods produce similar 

estimated values for sample sizes being 500 and 1,000; for 

sample size being 2,000, the PX-DA algorithm produces 

biased estimation with lower 95% credible interval coverage 

probabilities, such as ��� with estimated value being 4.873 

and 77% coverage probability, ��,�,� with estimated value 

being 0.93 and 61% coverage probability and all the rest 

cut-points. Overall, it seems that the MH-GS algorithm gives 

the most precise estimated values for the cut-points; the 

PX-DA algorithm shows biased estimation for data with large 

sample sizes such as 2,000; while the PX-DAM algorithm 

has the largest standard deviations and thus maximum 95% 

interval credible coverage probabilities. 

Table 1. Averaged posterior means (Mean), standard deviations (SD) and 95% credible interval coverage probabilities (CP%) for regression parameters and 

cut-points with sample size 500 based on 100 generated datasets. 

 True Values 
MH-GS PX-DA PX-DAM 

Mean SD CP% Mean SD CP% Mean SD CP% 

���  1.0 1.018 0.08 93 1.014 0.08 93 1.017 0.08 95 

���  3.0 3.022 0.09 96 3.000 0.09 96 3.013 0.12 100 

��� 2.0 2.007 0.09 91 2.003 0.09 91 2.016 0.10 95 

��� 5.0 5.052 0.14 92 5.034 0.14 92 5.068 0.19 100 

��,�,� 1.0 1.01 0.07 96 1.01 0.07 93 1.00 0.12 100 

��,�,� 2.0 2.04 0.10 95 2.03 0.11 94 2.04 0.22 100 

��,�,� 1.0 1.01 0.06 90 0.99 0.07 90 0.98 0.11 100 

��,�,� 2.0 2.01 0.10 97 1.99 0.10 90 1.98 0.21 100 

��,�,�l 1.0 1.00 0.07 95 0.99 0.07 96 1.00 0.11 100 

��,�,� 2.0 2.03 0.10 96 2.00 0.10 96 2.00 0.21 100 

��,�,� 1.0 1.00 0.06 94 0.99 0.07 93 0.98 0.11 100 

��,�,� 2.0 2.03 0.10 97 2.01 0.10 96 2.00 0.21 100 

��,�,� 1.0 1.01 0.06 95 0.97 0.07 93 0.99 0.11 99 

��,�,� 2.0 2.01 0.10 93 2.00 0.11 91 2.02 0.21 100 

��,�,� 1.0 1.00 0.07 91 1.00 0.08 94 1.04 0.13 100 

��,�,� 2.0 2.01 0.09 87 2.01 0.11 93 2.09 0.25 100 

��,�,� 1.0 1.03 0.07 92 1.01 0.08 97 0.99 0.13 100 

��,�,� 2.0 2.02 0.09 93 2.00 0.11 95 1.97 0.23 100 

��,�,� 1.0 1.02 0.07 95 1.01 0.08 96 1.00 0.13 100 

��,�,� 2.0 2.03 0.09 88 2.02 0.21 94 2.00 0.23 100 

��,�,� 1.0 1.00 0.07 97 1.00 0.08 95 0.99 0.13 100 

��,�,� 2.0 2.02 0.09 91 2.01 0.11 94 2.00 0.23 100 

��,�,� 1.0 1.01 0.07 95 1.00 0.08 95 1.06 0.12 99 

��,�,� 2.0 2.02 0.09 94 2.03 0.11 93 2.12 0.22 100 

Table 2. Averaged posterior means (Mean), standard deviations (SD) and 95% credible interval coverage probabilities (CP%) for regression parameters and 

cut-points with sample size 2000 based on 100 generated datasets. 

 True Values 
MH-GS PX-DA PX-DAM 

Mean SD CP% Mean SD CP% Mean SD CP% 

��� 1.0 1.002 0.04 95 0.978 0.04 97 1.000 0.05 98 

��� 3.0 3.003 0.04 93 2.928 0.07 83 3.000 0.09 100 

���l 2.0 2.014 0.04 94 1.956 0.05 90 2.008 0.07 100 

��� 5.0 5.023 0.07 89 4.873 1.11 77 5.004 0.14 100 

��,�,� 1.0 0.99 0.03 94 0.93 0.05 61 0.99 0.10 100 

��,�,� 2.0 2.00 0.04 92 1.91 0.07 71 2.00 0.19 100 

��,�,� 1.0 1.00 0.03 84 0.93 0.05 78 0.98 0.10 100 



6 Xiao Zhang:  Bayesian Analysis of Multivariate Longitudinal Ordinal Data Using Multiple Multivariate Probit Models  

 

 True Values 
MH-GS PX-DA PX-DAM 

Mean SD CP% Mean SD CP% Mean SD CP% 

��,�,� 2.0 2.00 0.04 92 1.91 0.07 73 1.98 0.19 100 

��,�,� 1.0 1.01 0.03 88 0.93 0.05 70 0.97 0.10 100 

��,�,� 2.0 2.01 0.05 92 1.93 0.07 87 1.99 0.19 100 

��,�,� 1.0 1.00 0.03 85 0.93 0.05 70 0.98 0.10 100 

��,�,� 2.0 2.01 0.05 88 1.92 0.07 80 1.99 0.19 100 

��,�,� 1.0 0.99 0.03 91 0.93 0.05 69 1.00 0.10 100 

��,�,� 2.0 2.00 0.05 96 1.94 0.07 87 2.01 0.18 100 

��,�,� 1.0 1.00 0.03 89 0.92 0.06 65 1.02 0.12 100 

��,�,�l 2.0 2.00 0.04 89 1.89 0.08 70 2.05 0.23 100 

��,�,� 1.0 1.01 0.03 95 0.93 0.06 73 0.95 0.10 100 

��,�,� 2.0 2.01 0.04 96 1.90 0.08 80 1.93 0.20 100 

��,�,� 1.0 1.00 0.03 91 0.93 0.06 71 0.97 0.11 100 

��,�,� 2.0 2.02 0.04 88 1.91 0.08 71 1.98 0.21 100 

��,�,� 1.0 1.00 0.03 88 0.92 0.06 80 0.96 0.11 100 

��,�,� 2.0 2.01 0.04 94 1.90 0.08 75 1.94 0.21 100 

��,�,� 1.0 1.00 0.03 93 0.92 0.06 76 1.02 0.10 100 

��,�,� 2.0 2.01 0.04 91 1.90 0.08 75 2.07 0.20 100 

 

Figure 1. Boxplots of the absolute biases of correlations for sample sizes being 500, 1000, and 2000 based on 100 generated datasets (those with dark gray for 

the MH-GS algorithm, those with medium gray for the PX-DA algorithm and those with light gray for PX-DAM algorithm). 

Figure 1 illustrates the boxplots of the absolute biases for 

correlations of the latent multivariate normal variables from 

the first longitudinal ordinal response (the first column) and 

the second longitudinal ordinal response (the second column). 

It shows that with sample size being 500 (the first row), these 

three methods produce similar absolute biases for those 

correlations; with sample size being 1,000 (the second row), 

the MH-GS and PX-DAM algorithms give similar absolute 
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biases while the PX-DA produces biased estimated 

correlations, especially for the second longitudinal response; 

with sample size being 2,000 (the third row), the MH-GS and 

PX-DAM algorithms still give similar absolute biases while 

the PX-DA produces serious biased estimated correlations 

for both longitudinal responses. The boxplots of the absolute 

biases for the correlations between those two MVP models 

are presented in Appendix Figure A1. It shows the similarity 

of these three algorithms for sample sizes being 500 and 

1,000 while the PX-DA algorithm has serious biases for 

sample size being 2,000. 

The autocorrelation function (ACF) plots for selected 

parameters are shown in Figure 2. It is evident that in general 

the MH-GS algorithm has the slowest decreased ACF values 

while the PX-DAM algorithm shows the fastest. The ACF 

values for the PX-DA algorithm display that with large 

sample size (such as 2,000) the ACF values of the regression 

parameter ���  decreased slower even than that for the 

MH-GS algorithm; the ACF values of the cut-points 

significantly decrease slower with larger sample size; the 

ACF values for the correlations are affected not only by 

sample sizes but also by the values themselves, i.e., 

t�� � 0.0625 without being affected while t�� � 0.7 being 

significantly affected by increasing sample sizes. 

 

Figure 2. The ACF plots for selected parameters with sample sizes being 500, 1,000 and 2,000 based on 100 generated datasets. The black dot-dash lines 

indicate the MH-GS algorithm, the medium gray long-dashed lines indicate the PX-DA algorithm and the light gray solid lines indicate the PX-DAM algorithm. 

5. Application to the RLMS-HSE 

The Russia Longitudinal Monitoring Survey-Higher Schools 

of Economics (RLMS-HSE) was to collect data to study the 

effects of Russian reforms on the health and economic welfare 

of households and individuals [14]. One of the main aspects 

focuses on the job satisfaction with the primary and secondary 
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employments, which is a 5-categorical ordinal variable defined 

as “absolutely satisfied”, “mostly satisfied”, “neutral”, “not 

very satisfied” and “absolutely unsatisfied”. To study the 

relationship between the job satisfaction and other satisfaction, 

such as satisfaction of education, family, environment, living 

conditions, etc, is also another focus of the survey. This 

application is targeted to investigate the relationship between 

the job satisfaction and the satisfaction with life at present, 

which is another longitudinal ordinal variable with five 

categories. The data is chosen from 2013 to 2019 and include 

gender (1 being male and 0 female), marital status (1 being in a 

registered marriage and 0 otherwise), education (1 having 

university diploma and 0 otherwise), and age as the covariates. 

There are a total of 2704 individuals after excluding those with 

missing values. Then categories of “not very satisfied” and 

“absolutely unsatisfied” for job satisfaction are combined and 

categories “fully satisfied” and “rather satisfies” are combined 

for the satisfaction with life at present due to sparse sizes in 

those categories. 

The model selection is conducted for job satisfaction using 

the MVP model: first considering the main effect model 

including gender, marital status, education and age (all the 

effects are significant); then - constructing two-way 

interaction model by including all two-way interaction besides 

the main effects (only the interaction of marital status and 

gender is significant); finally, considering the model with all 

main effects and the interaction of marital status and gender. 

The log likelihoods, BIC and AIC and selected the model with 

main effect without any interactions are calculated. The model 

selection for the satisfaction with life at present is also 

conducted with the similar conclusion as those for job 

satisfaction. Therefore, in the following multivariate 

longitudinal analysis, the main effects as the covariates for 

both the job satisfaction and the satisfaction with life at 

present are considered. 

The MH-GS, PX-DA and PX-DAM algorithms are run 

with 20,000 iterations with 10,000 burn-in using the same 

prior specifications as those in Section 4. Table 3 presents 

the log-likelihood, the estimated posterior means with 

standard deviations of the regression parameters for job 

satisfaction and satisfaction with life at present. It shows 

that the MH-GS algorithm has the largest log-likelihood 

values, while the PX-DA algorithm has the smallest among 

those three algorithms. All the covariates are significant 

(using 95% credible intervals Specifically, female tends to 

have a higher job satisfaction than male, while male tend to 

have a high satisfaction of life at present than female; older 

people tend to have a high job satisfaction while have a 

lower satisfaction of life at present; people with married 

status and diplomas (institute, university, academy) tend to 

have a higher job satisfaction and satisfaction of life in 

present as well. 

Table 3. The log-likelihood, estimated regression parameters with standard deviations for job satisfaction and satisfaction of life at present. 

Log-likelihood 
Job Satisfaction Satisfaction of Life at Present 

Gender Marital Educ Age Gender Marital Educ Age 

MH-GS 

(-35653.3) 

-0.0908 

(.0298) 

0.0835 

(.0308) 

0.2202 

(.0305) 

0.0048 

(.0012) 

0.1655 

(.031) 

0.2934 

(.0322) 

0.2815 

(.0323) 

-0.0049 

(.0013) 

PX-DA 

(-35847.2) 

-0.0876 

(.0294) 

0.0791 

(.0303) 

0.2057 

(.0299) 

0.0045 

(.0013) 

0.1552 

(.0311) 

0.2749 

(.0318) 

0.2626 

(.0323) 

-0.0043 

(.0013) 

PX-DAM 

(-35664.6) 

-0.0901 

(.0289) 

0.0794 

(.0303) 

0.2179 

(.0307) 

0.006 

(.0012) 

0.158 

(.0317) 

0.2797 

(.0329) 

0.2681 

(.0327) 

-0.0033 

(.0015) 

Table 4. The estimated correlation matrix of the underlying latent multivariate normal variables corresponding to job satisfaction and satisfaction of life from 

year 2013 to year 2019 using MH-GS. 

Job Satisfaction Satisfaction of Life at Present 

2013 2014 2015 2016 2017 2018 2019 2013 2014 2015 2016 2017 2018 2019 

1 0.46 0.42 0.42 0.41 0.36 0.33 0.3 0.27 0.23 0.16 0.22 0.2 0.2 

0.46 1 0.53 0.44 0.42 0.37 0.36 0.26 0.36 0.27 0.17 0.22 0.24 0.23 

0.42 0.53 1 0.5 0.49 0.43 0.41 0.25 0.29 0.32 0.2 0.23 0.25 0.28 

0.42 0.44 0.5 1 0.58 0.54 0.51 0.22 0.26 0.27 0.28 0.3 0.27 0.29 

0.41 0.42 0.49 0.58 1 0.56 0.52 0.26 0.31 0.31 0.26 0.37 0.33 0.32 

0.36 0.37 0.43 0.54 0.56 1 0.58 0.2 0.22 0.24 0.21 0.26 0.37 0.32 

0.33 0.36 0.41 0.51 0.52 0.58 1 0.22 0.27 0.24 0.2 0.25 0.33 0.4 

0.3 0.26 0.25 0.22 0.26 0.2 0.22 1 0.51 0.47 0.42 0.43 0.41 0.35 

0.27 0.36 0.29 0.26 0.31 0.22 0.27 0.51 1 0.53 0.48 0.44 0.42 0.4 

0.23 0.27 0.32 0.27 0.31 0.24 0.24 0.47 0.53 1 0.55 0.5 0.45 0.44 

0.16 0.17 0.2 0.28 0.26 0.21 0.2 0.42 0.48 0.55 1 0.55 0.49 0.45 

0.22 0.22 0.23 0.3 0.37 0.26 0.25 0.43 0.44 0.5 0.55 1 0.57 0.49 

0.2 0.24 0.25 0.27 0.33 0.37 0.33 0.41 0.42 0.45 0.49 0.57 1 0.58 

0.2 0.23 0.28 0.29 0.32 0.32 0.4 0.35 0.4 0.44 0.45 0.49 0.58 1 

Table 5. The estimated correlation matrix of the underlying latent multivariate normal variables corresponding to job satisfaction and satisfaction of life from 

year 2013 to year 2019 using PX-DA. 
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Job Satisfaction Satisfaction of Life at Present 

2013 2014 2015 2016 2017 2018 2019 2013 2014 2015 2016 2017 2018 2019 

1 0.43 0.4 0.39 0.39 0.34 0.31 0.3 0.27 0.24 0.16 0.22 0.2 0.2 

0.43 1 0.5 0.42 0.4 0.35 0.35 0.26 0.34 0.28 0.19 0.22 0.23 0.22 

0.4 0.5 1 0.48 0.47 0.41 0.39 0.25 0.29 0.32 0.21 0.24 0.24 0.27 

0.39 0.42 0.48 1 0.54 0.5 0.47 0.23 0.26 0.27 0.28 0.31 0.27 0.3 

0.39 0.4 0.47 0.54 1 0.52 0.48 0.26 0.3 0.31 0.26 0.36 0.32 0.31 

0.34 0.35 0.41 0.5 0.52 1 0.53 0.22 0.23 0.26 0.22 0.26 0.35 0.31 

0.31 0.35 0.39 0.47 0.48 0.53 1 0.22 0.27 0.25 0.21 0.25 0.31 0.37 

0.3 0.26 0.25 0.23 0.26 0.22 0.22 1 0.49 0.47 0.43 0.44 0.41 0.37 

0.27 0.34 0.29 0.26 0.3 0.23 0.27 0.49 1 0.53 0.48 0.44 0.41 0.4 

0.24 0.28 0.32 0.27 0.31 0.26 0.25 0.47 0.53 1 0.54 0.5 0.45 0.45 

0.16 0.19 0.21 0.28 0.26 0.22 0.21 0.43 0.48 0.54 1 0.54 0.49 0.46 

0.22 0.22 0.24 0.31 0.36 0.26 0.25 0.44 0.44 0.5 0.54 1 0.55 0.49 

0.2 0.23 0.24 0.27 0.32 0.35 0.31 0.41 0.41 0.45 0.49 0.55 1 0.57 

0.2 0.22 0.27 0.3 0.31 0.31 0.37 0.37 0.4 0.45 0.46 0.49 0.57 1 

Table 6. The estimated correlation matrix of the underlying latent multivariate normal variables corresponding to job satisfaction and satisfaction of life from 

year 2013 to year 2019 using PX-DAM. 

Job Satisfaction Satisfaction of Life at Present 

2013 2014 2015 2016 2017 2018 2019 2013 2014 2015 2016 2017 2018 2019 

1 0.47 0.42 0.42 0.41 0.36 0.33 0.33 0.29 0.25 0.17 0.23 0.21 0.21 

0.47 1 0.54 0.45 0.43 0.37 0.37 0.28 0.37 0.3 0.2 0.23 0.24 0.23 

0.42 0.54 1 0.51 0.5 0.44 0.42 0.27 0.31 0.35 0.22 0.25 0.26 0.29 

0.42 0.45 0.51 1 0.58 0.54 0.51 0.24 0.28 0.29 0.3 0.33 0.28 0.31 

0.41 0.43 0.5 0.58 1 0.56 0.51 0.28 0.33 0.33 0.27 0.39 0.34 0.33 

0.36 0.37 0.44 0.54 0.56 1 0.57 0.23 0.24 0.27 0.23 0.28 0.38 0.33 

0.33 0.37 0.42 0.51 0.51 0.57 1 0.24 0.29 0.27 0.22 0.26 0.33 0.4 

0.33 0.28 0.27 0.24 0.28 0.23 0.24 1 0.54 0.51 0.45 0.47 0.44 0.39 

0.29 0.37 0.31 0.28 0.33 0.24 0.29 0.54 1 0.57 0.51 0.47 0.44 0.43 

0.25 0.3 0.35 0.29 0.33 0.27 0.27 0.51 0.57 1 0.58 0.54 0.48 0.48 

0.17 0.2 0.22 0.3 0.27 0.23 0.22 0.45 0.51 0.58 1 0.58 0.52 0.49 

0.23 0.23 0.25 0.33 0.39 0.28 0.26 0.47 0.47 0.54 0.58 1 0.59 0.52 

0.21 0.24 0.26 0.28 0.34 0.38 0.33 0.44 0.44 0.48 0.52 0.59 1 0.6 

0.21 0.23 0.29 0.31 0.33 0.33 0.4 0.39 0.43 0.48 0.49 0.52 0.6 1 

 

Tables 4, 5 and 6 present the estimated correlations of the 

underlying latent multivariate normal variables corresponding 

to job satisfaction and satisfaction of life at present (the 

estimated standard deviations vary from 0.02 to 0.03 for each 

method). It indicates that the correlations of the latent 

variables for satisfaction of life at present varying from 0.39 to 

0.60 are a little higher than those for job satisfaction varying 

from 0.33 to 0.58; the correlations between those two 

measures vary from 0.17 to 0.40, suggesting that those two 

measures are modestly correlated. As can be seen, the 

estimated correlations using the PX-DA algorithm are 

unanimously smaller than the MH-GS and PX-DAM 

algorithms; for instance, t�� (year 2013 vs year 2014 for job 

satisfaction) is estimated to be 0.43 for the PX-DA algorithm 

while be 0.46 for the MH-GS algorithm and 0.47 for the 

PX-DAM algorithm, and t�  (year 2013 vs year 2014 for 

life satisfaction) is estimated to be 0.49 for the PX-DA 

algorithm while 0.51 for the MH-GS algorithm and 0.54 for 

the PX-DAM algorithm. This phenomenon is consistent with 

the findings in simulation studies in section 5, i.e., the 

PX-DA algorithm may produce biased or underestimated 

correlations in comparison with the MH-GS and PX-DAM 

algorithms. 

6. Discussion 

In this manuscript the MH-GS algorithm based on the 

identifiable MMVP model and the PX-DA and PX-DAM 

algorithms based on the non-identifiable MMVP model are 

proposed for analyzing multivariate longitudinal ordinal data. 

Simulation studies show that those proposed algorithms 

produce similar estimated regression parameters, cut-points 

and correlations for data with sample size being 500, while the 

PX-GS algorithm tends to give biased estimation for data with 

large sample sizes, such as 1,000 and 2,000. However, the 

PX-DA and PX-DAM algorithms have faster convergences 

for almost all parameters than the MH-GS algorithm does, 

especially for sample size being 500 and 1,000. This suggests 

that the sampling methods based on the non-identifiable 

models improve the convergences of the MCMC components 

compared with those based on the identifiable models. 

However, for data with large sample sizes, marginalizing the 

redundant parameters in the non-identifiable models should be 

considered, otherwise it may produce biased estimated values. 

Real data application illustrates that the MH-GS algorithm 



10 Xiao Zhang:  Bayesian Analysis of Multivariate Longitudinal Ordinal Data Using Multiple Multivariate Probit Models  

 

has the largest log-likelihood values among those three 

algorithms, suggesting that the algorithm based on the 

identifiable model produces more precise estimated values in 

comparison with those based on the non-identifiable models. 

The observation regarding correlations estimation, i.e., the 

PX-DA algorithm produces biased or underestimated 

correlations in comparison with the MH-GS and PX-DAM 

algorithms, is consistent with the findings of simulation 

studies. 

7. Conclusion 

The MCMC methods proposed in this manuscript can 

provide a joint analysis of multivariate longitudinal ordinal 

data and provide a direct estimation for the correlations 

among the underlying multivariate normal variables for 

multivariate longitudinal ordinal data. However, both 

mixed-effects models and separate analysis cannot provide a 

direct estimation for correlations of those multivariate 

measurements. 

The investigation further demonstrates that MCMC sampling 

methods based on non-identifiable models may improve the 

convergences in comparison with those based on the identifiable 

models, while those based on the identifiable models may 

produce model with larger log-likelihood values than those based 

on the non-identifiable models. However, non-identifiable 

models may produce serious biased estimation without 

marginalization of the redundant parameters for data with large 

sample sizes. 

Further investigation of those proposed algorithms in other 

multivariate longitudinal data structures, such as mixed 

longitudinal ordinal and continuous data, will be one of our 

future research focuses. 

Appendix 

 

Figure A1. Boxplots of the absolute biases of correlations for sample sizes being 500, 1000, and 2000 based on 100 generated datasets (those with dark gray 

for the MH-GS algorithm, those with medium gray for the PX-DA algorithm and those with light gray for PX-DAM algorithm). 
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Table A1. Averaged posterior means (Mean), standard deviations (SD) and 95% credible interval coverage probabilities (CP%) for regression parameters and 

cut-points with sample size 1000 based on 100 generated datasets. 

 True Values 
MH-GS PX-DA PX-DAM 

Mean SD CP% Mean SD CP% Mean SD CP% 

���  1.0 1.008 0.05 98 0.995 0.05 98 1.006 0.06 98 

���  3.0 3.008 0.07 97 2.971 0.07 93 3.000 0.10 100 

���  2.0 2.001 0.06 92 1.978 0.06 93 2.001 0.08 97 

���  5.0 5.022 0.09 95 4.969 0.11 94 5.033 0.16 99 

��,�,�  1.0 1.00 0.04 90 0.98 0.05 94 1.00 0.10 100 

��,�,�  2.0 2.01 0.07 95 1.97 0.08 93 2.01 0.20 100 

��,�,� 1.0 1.00 0.04 94 0.96 0.05 92 0.99 0.10 100 

��,�,�l 2.0 2.01 0.07 93 1.97 0.08 93 1.99 0.20 100 

��,�,�l 1.0 1.00 0.04 91 0.96 0.05 86 0.99 0.10 100 

��,�,� 2.0 2.01 0.07 93 1.97 0.08 93 1.99 0.20 100 

��,�,� 1.0 1.00 0.04 94 0.97 0.05 94 0.98 0.10 100 

��,�,� 2.0 2.02 0.07 94 1.98 0.08 94 1.99 0.20 100 

��,�,� 1.0 1.01 0.04 90 0.98 0.05 94 1.01 0.10 100 

��,�,� 2.0 2.00 0.07 93 1.96 0.08 92 2.01 0.19 100 

��,�,� 1.0 1.00 0.05 95 0.97 0.06 98 1.04 0.13 100 

��,�,� 2.0 2.00 0.06 91 1.97 0.08 95 2.07 0.23 100 

��,�,� 1.0 1.00 0.04 92 0.97 0.05 95 0.97 0.11 100 

��,�,� 2.0 2.00 0.06 91 1.96 0.08 94 1.95 0.21 100 

��,�,� 1.0 1.00 0.05 96 0.97 0.06 96 0.99 0.12 100 

��,�,� 2.0 2.01 0.06 97 1.95 0.08 88 1.97 0.22 100 

��,�,� 1.0 1.00 0.05 87 0.96 0.06 87 0.97 0.11 100 

��,�,� 2.0 2.00 0.06 92 1.97 0.08 91 1.96 0.22 100 

��,�,� 1.0 1.00 0.05 96 0.97 0.06 92 1.05 0.11 100 

��,�,� 2.0 2.00 0.06 89 1.96 0.08 94 2.07 0.20 100 
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